En este trabajo se propone modelar la función de distribución conjunta del tiempo de supervivencia 𝑇 y del tipo de evento 𝐷 para el análisis de riesgos competitivos a través de modelos basados en cópulas Gaussianas. Efectos de covariables se incorporan al caracterizar las distribuciones marginales usando modelos paramétricos y...
La falta de datos en las variables explicativas de los modelos lineales generalizados es un problema común que se ha estudiado por muchos años y se han propuesto diversos métodos para enfrentarlo. Entre estos métodos, un procedimiento basado en modelos como lo es máxima verosimilitud representa una metodología de estimación...